
Quickstart Guide

Apache ServiceMix
Version 6.0.0-SNAPSHOT

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

1. Introduction
First of all, welcome to the Apache ServiceMix project!

The goal of this Quickstart guide is to give you a 20-minute overview of what ServiceMix is and
what you can do with it. In that time, we'll install ServiceMix on your machine, deploy some
basic integration routes and extend the container with an additional feature.

Apache ServiceMix 6.0.0-SNAPSHOT

2

2. Installation
Before we can start working with Apache ServiceMix, we have to get it installed and running on
our local machine first.

2.1. System requirements

For running Apache ServiceMix itself, you'll need

• Java Runtime Environment (JRE) 1.6.x (Java 6) or
Java Runtime Environment (JRE) 1.7.x (Java 7)

• About 100 MB of free disk space for the default assembly

If you're developing your own integration applications and OSGi bundles, you'll also need

• Java Developer Kit (JDK) 1.6.x (Java 6) or
Java Developer Kit (JDK) 1.7.x (Java 7)

• Apache Maven 3.0.4 or higher

2.2. Downloading Apache ServiceMix

Apache ServiceMix 6.0.0-SNAPSHOT is available under the Apache License v2 and can be
downloaded from http://servicemix.apache.org/downloads.html.

Depending on your operation system, you should download either the tar.gz or the zip file:

• tar.gz for Linux/Unix/MacOS X

• zip for Windows

2.3. Installing Apache ServiceMix

Installing Apache ServiceMix is as simple as uncompressing the downloaded archive on your
hard disk. For the rest of this guide, we'll refer to the this location as <SERVICEMIX_HOME>.

2.4. Starting Apache ServiceMix

Depending on your platform, start Apache ServiceMix by following the instructions below. After
starting the container, you will have access to the console from which you can manage the
container.

On Windows

In a command prompt window, navigate to the directory where you extracted ServiceMix and
run the bin\servicemix.bat file.

Example: if ServiceMix in installed in the c:\tools\apache-servicemix-6.0.0-SNAPSHOT
directory

Apache ServiceMix 6.0.0-SNAPSHOT

3

http://servicemix.apache.org/downloads.html

> cd c:\tools\apache-servicemix-6.0.0-SNAPSHOT
> .\bin\servicemix

On Linux/Unix/MacOS X

On a command shell, navigate to the directory where you extracted ServiceMix and the bin/
servicemix shell script

Example: if ServiceMix is installed in the ~/Applications/apache-servicemix-6.0.0-SNAPSHOT
directory.

$ cd ~/Applications/apache-servicemix-6.0.0-SNAPSHOT
$./bin/servicemix

!/quickstart/images/start-linux.png

|width=75%|height=75%!

Apache ServiceMix 6.0.0-SNAPSHOT

4

3. Apache ServiceMix console
Now that we successfully installed and started Apache ServiceMix, we'll take a closer look at the
console. This is where you manage your ServiceMix instance, add and remove bundles, install
optional features, ...

3.1. Working with bundles

When ServiceMix is first started, a whole set of bundles providing the core features for the
product are being installed. Let's use the command console to find out more about them...

The bundle:list command can be used to get a list of all bundles currently installed. Enter this

karaf@root> bundle:list

This is what the output looks like if you run this on your ServiceMix instance.

!/quickstart/images/osgi-list.png

|title=osgi:list!

For every bundle, you see:

• the bundle id

• the bundle state

• if the bundle contains a Blueprint or Spring XML file, the next 2 columns will show you if
the beans defined there were created successfully

• the bundle start level

• the bundle name and version

If you're looking for something specific in the list, you can use unix-like pipes and utilities to
help you. An example: to look for all Camel related bundles...

karaf@root> bundle:list | grep camel

!/quickstart/images/osgi-list-pipegrep.png

|title=osgi:list!

3.2. Working with logging

Many of the applications you write will have some form of log output. To look at the message in
the log file, you can us the log:diplay command.

karaf@root> log:display

!/quickstart/images/log-display.png

|title=log:display!

Apache ServiceMix 6.0.0-SNAPSHOT

5

If you're only interested in the latest exception in the log file, you can use log:display-
exception instead.

karaf@root> log:display-exception

!/quickstart/images/log-display-exception.png

|title=log:display-exception!

You can also change the log level at runtime by using the log:set command. You can try these
commands on your instance now by first setting the log level to DEBUG and then using grep to
make sure that you can actually see the extra logging.

karaf@root> log:set DEBUG
karaf@root> log:display | grep DEBUG

!/quickstart/images/log-set-debug.png

|title=log:set DEBUG!

Afterwards, revert the log level to its original INFO value again with log:set.

karaf@root> log:set INFO

3.3. ...and there's a lot more

These are obviously just a few examples of what the command shell is all about. There are a lot
more commands in the shell to help you deploy, monitor, manage and troubleshoot the
applications you're building with ServiceMix.

Apache ServiceMix 6.0.0-SNAPSHOT

6

4. Using Camel
Now that we know how to operate Apache ServiceMix through the shell console, it's time to start
using it for what it is built for. Let's build our very first integration solution with a Camel route
and deploy it on ServiceMix.

4.1. Our simple scenario

In this simple scenario, we're going to move files from an input directory called camel/input to
an output directory called camel/output. To ensure we can keep track of which files get moved,
we'll also write a message to the log file whenever we move a file.

4.2. Creating the route

One of the most simple ways to deploy a new route on ServiceMix, is by defining the route in a
Blueprint XML file.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="file:camel/input"/>
<log message="Moving ${file:name} to the output directory"/>
<to uri="file:camel/output"/>

</route>
</camelContext>

</blueprint>

4.3. Deploying the route

In order to deploy and start the route, just copy the XML file you created into ServiceMix'
deploy directory. The file will get picked up and deployed by ServiceMix. You will see a camel/
input folder appear in your ServiceMix installation directory and any files you copy into that
directory will get moved into the camel/output directory.

If you do a log:display in the shell, you will also see the log output for every file that's been
moved.

Apache ServiceMix 6.0.0-SNAPSHOT

7

4.4. Using the shell to manage the route

Using bundle:list, you'll notice that your XML file has been transformed into a bundle and that
the Blueprint container has been created to start your Camel route.

From this output, you also learn that the bundle id for your XML file is 200. This allow you to
start and stop the route whenever necessary. Let's give this a go now...

First, stop the route with

karaf@root> bundle:stop 200

The route is no longer active, so any files you copy into the orders/input folder will remain
there for now. As soon as you restart the route, the pending files will get moving again.

karaf@root> bundle:start 200

Apache ServiceMix 6.0.0-SNAPSHOT

8

5. Adding ActiveMQ to the 'Mix
Out-of-the-box, every Apache ServiceMix instance comes with an embedded ActiveMQ JMS
broker. This makes it easy to communicate between Camel routes using persistent messages on
the same machine, but it will also enable you to distribute your routes over multiple instances
afterwards for clustering or load-balancing.

5.1. Our scenario

In this scenario, we also want to move files between directories. Instead of logging the move
directly, we are going to send an event JMS message onto a queue. Afterwards, we will create a
second Camel route to receive the events and log them.

5.2. Moving files and sending event messages

The first Blueprint XML file we'll create contains a Camel route that moves the files from
activemq/input to the activemq/output directory. Afterwards, it will generate an event
message and send that to an ActiveMQ queue called events.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="file:activemq/input"/>
<to uri="file:activemq/output"/>
<setBody>
<simple>

FileMovedEvent(file: ${file:name}, timestamp: ${date:now:hh:MM:ss.SSS})
</simple>

</setBody>
<to uri="activemq://events" />

</route>
</camelContext>

</blueprint>

Save this file in ServiceMix' deploy folder and use bundle:list to check on the bundle status as
you did with the simple Camel example. You should now be able to put files in the activemq/
input directory and see them being moved to activemq/output.

5.3. Receiving the event messages

After deploying the first XML file, you're obviously not seeing any events being logged yet. The
event messages are sent to an ActiveMQ queue, but there's nobody to receive the events yet.
Let's change that now by creating a second Blueprint XML file.

Apache ServiceMix 6.0.0-SNAPSHOT

9

<?xml version="1.0" encoding="UTF-8"?>
<blueprint

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="activemq://events"/>
<to uri="log:events"/>

</route>
</camelContext>

</blueprint>

As soon as this second file has been deployed, you'll start seeing the event messages in your
log:display output.

5.4. Using the shell to manage the routes

You can now start and stop both routes from the command shell. The important thing to note
here is that you can stop the event handler route while files are being processed. As soon as you
restart that bundle afterwards, you'll receive the events from all files that have been moved
while the route was not running.

Apache ServiceMix 6.0.0-SNAPSHOT

10

6. Optional features
Everything discussed in the quickstart guide so far is installed out-of-the-box in Apache
ServiceMix, but we also have a lot of optional features that can be installed in the container
when necessary.

6.1. List of features

The list of features is available with the features:list command. The overview shows you
whether or not the feature is currently installed, the version and the name of the feature.

The full list contains a lot of different features: optional Camel components, features for adding
OBR or wrapper support to Serviceix, a web console, ... Again, you can use things like {{

|}} and grep to find the things in the list that you're interested in.

karaf@root> features:list | grep camel

Apache ServiceMix 6.0.0-SNAPSHOT

11

6.2. Example: Web console

To get the web console installed in ServiceMix, install the feature from your console

karaf@root> features:install webconsole

Afterwards, you can verify that the feature is marked installed in the overview. You'll notice that
the webconsole-base feature has also been installed as a requirement for the webconsole
feature itself.

karaf@root> features:list | grep webconsole

You will now be able to point your browser to http://localhost:8181/system/console and login
with user smx and password smx to access the web console. From the webconsole, you can also
start and stop bundles, install optional features again, ...

Apache ServiceMix 6.0.0-SNAPSHOT

12

7. Wrapping it up...
This is where our introductory journey through the world of Apache ServiceMix ends. We've
obviously just scratched the surface of what is possible, but we hope you have an idea of what
you can expect from Apache ServiceMix and how you can use it in your environment.

For more in-depth information, have a look at our set of user guides. Also, if you have any
questions, we welcome you on our user mailing list!

Apache ServiceMix 6.0.0-SNAPSHOT

13

	Introduction
	Installation
	System requirements
	Downloading Apache ServiceMix
	Installing Apache ServiceMix
	Starting Apache ServiceMix
	On Windows
	On Linux/Unix/MacOS X

	Apache ServiceMix console
	Working with bundles
	Working with logging
	...and there's a lot more

	Using Camel
	Our simple scenario
	Creating the route
	Deploying the route
	Using the shell to manage the route

	Adding ActiveMQ to the 'Mix
	Our scenario
	Moving files and sending event messages
	Receiving the event messages
	Using the shell to manage the routes

	Optional features
	List of features
	Example: Web console

	Wrapping it up...

